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ABSTRACT

‘\\r present a formula for likchhood funcuonals tor signals in which the corrupting nowe 1s
modelled as white noise rather than the usual Wiener process. The main difference 1s the
appearance of an addivonal term corresponding 1o the conditional mean square error. By
way of one application we consider the ‘order-disorder” problem of Shiryayev.

1. Introduction.  The problem of detecung signals in poise 1s usually
phrased in the following way:

vl =51+ N(1) <1< T<x : (1

where v () is the “observed™ stochastic process being the sum of a “signal”
process S (1), and N (1) the “noise™ process, the two processes being mutually
independent The signal is usually a relanvely “smooth®” process in comparison
with the noise  more specifically the noise process has “large” bandwidth
compared to that of the signal (we use this bandwidth notion in a general way
since the signal is not assumed o be necessanly stauonary). To allow for this in
a theoretical way, it was customary i engineering untl the 1960's to allow N (1)
10 be “white noise”™ even though unfortunately there was no precise defimuon of
this. Because of this, begimnimg about 1960, 1t became fashionable to replace the
model (1) by the "Wicner Process™ version: We write

!
Y(r)= [ yv(s)ds
J
and then make the change

)(l)-‘-fl.ﬁ(a)dnt W),
(1)

where W () 1s a Wiener process. There 1s no harm i this as long as operations
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on the obscrved process are hinear —as tor example i the case of filtering theory
tor Gausstan sienals Sighicant ditficalues appear i application as soon as we
vo o non-hmear operations: as for example m caleulating likelihood ratios (for
contimuous-time-parameter processes), basically because any non-linear opera-
ton s an losmtegral i the observed data in which the differential @Y cannot
smiply be replaced by v(nd

Hlere we shall show that there s an alternate theory m which this difficulty
In this theory we go back 1o (1) but now take N(7) to be
“white-Gaussian™ m the precise sense of immducing a weak distribution (finitely
additive measure) on an L,-space. In this case the process y(-) also induces a
stlar and we may then calculate the Radon-Nikodym
dernvative of the weak distnibutions. This approach i1s many ways simpler; 1t
avoids tor example the necessity to invoke the Girsanov theorem. But the most
miporant conscquence is a caleulable hkelthood function. In this way we can
ngorously jusufy the somewhat ad-hoe usage of the Wong-Zakai corrections or
the Stratanovich integral or the circle differenual of lto. It turns out that the
latter are special cases of the more general white nowse theory.

In Secuon 2 we indicate the basic nouons and definitions that we need. The
the hikehhood functional formula 1s given in Section 3. In particu-
lur we see that there is i correction term to the usual Ito formula which can be
calculated in terms of the conditional mean square error.

In Sectnon 4 we indicate one application of the theory to the so-called
“disruption”™! problem imitiated by Shiryayev-Kolmogorov [1]. We show that our
formula for the condinonal probabihity agrees with the version that has been
used by Liptser 2] in actual analogue computer usage.

does not anse

weak distnibuton

nmatn result

2. Basic Notions: White Noise Theory.  We shall now indicate brietly the
relevant notions from white noise theory, leaving details to [3). Let

W(=L,1(0.0):R,] 0< 1< o0

where R, denotes real Fuchdean space of dimension n. By white (Gaussian)
mean the elements of W(r) under the weak distnbution (Gauss
measure) defined in terms of the charactensuc funcuon C(h);

NOINE We

C(h)=exp - Hh.h],,

where | . ], denotes inner-product in W (1), See for example Skorokhod [4].
More generally let g denote any weak distribution on W (r). Let f(+) be an
function mapping W () into another Hilbert space H,. Let f(-) be Borel
measurable. Let P be any finite dimensional projection on W (1). Then f(Pw),
where w denotes pomts in W (1), 1s referred to as a “tame function”, since f(Pw)
is @ random variable i the sense that it induces a countably additive probability

'Also referred 1o as “order-disorder” problem
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measute on Hoso that mparocuta we may speak of the probability that
((l'w)e Borel setim H,.

We shall say tiat o Borel measurable function s a weak random variable af for
any sequence of fimte dimensional projections P o converging strongly to the
identity

| /(I'”w)i
is @ Cauchy sequence e probability such that
C(h)= hmit I.{c\p:[ /(/'“u)_/,J J heH,

i independent of the particular sequence of projections chosen. In this case the
weak distribution tiduced by f(w) is by detinition that corresponding to C (h). If
the space M, s timite dimensional then of course the weak distribution will be
countably additive so that we will drop the qualifier “weak”. Also if the
sequence { f(Pw)) 1s Cauchy actually in the mean of order two, then by the
Sazonoy theorem we know that C(h) must be the charagteristic function of a
countably addiive measure and hence again we may drop the qualifier “weak™
in this case as well. See [3] for many examples of such random variables.

Let g, be two weak distributions on W(r) [or more generally on any
separable Hilbert space] We shall say that p, 1s absolutely continuous with
respect to g, il given by « ~0 we can find 8 -0 such that for any cylinder set C
with fimte-dimensional base:

1,(C )< ¢ whenever g (C)<8.

We shall say that the randon vanable £(+) 1s the Radon-Nikodym denvative of
pu, with respect o pof for any cyhinder set € and any sequence P, of finune
dimensional projectons converging strongly to the identity:

pC )= l”,'.mf f(P,w)dp,
«

We shall be concerned with this only in the case where py 1s Gauss measure.

Finally a brief eaplanatory word about random variables (taking H, now to
be finite dimensional), and we take the case of Gauss measure. Let {¢,} be any
orthonormal basis i W (7). Then we usually take the space of all sequences to
be Q. with /i to be Borel sets therein and determine 2 countably addiuve
measure on 8 which agrees with the given distnibutions of a finite number of the
varnables

J

fl(,‘;,(\),ui\)]d\
0

In the case of Gauss measure, this s equivalent o taking Wiener measure on




A

ClO ) ey s any random varable, then
P

will be a Cauchy sequence converging i probability (o some random vartable
measutable 4 (orats compleuon). With white noise however the sample space for
us s /o the space of square summable sequences. In both cases we agree on
distributons mvolving only a finite number of the basic varniables:

’ﬂlft;r‘(\),w(\)j(/\

<0

However not every vanable measurable 8 can be expressed as a “random
variable™ f(w) i our sense. For more on this see [3]. We shall not need to dwell
on this much i this paper.

3. The Main Results.  Let (2. .p) denote a probability triple in the usual
notation and S(r.w) be an K, valued jointly measurable stochastic process,
0« 1. such that for cach I, 0< 1

-1
‘ ELIS (rw))?]di< o (3.1)

Jo
Since this implies in particular that
E[|S(rw)f] <o aec int,
we shall simply assume thruout that
l;'[ ,‘S(l.w).|“ ] <o lorevery 1,0<t.
Let W) denote the L -space.

W)= 1,[(0.1]:R,]

for each 1, O« . Then by the ubini theorem,

7
f.|.\‘(/,u)||’d/<;oo a.e I w
LY

and
olrhw)=5S(,w)
where S(-.w) denotes the funcuon

S(o,w), O<o<1t

e ——




viclds g (Boreh measurable mappmg of &£ into W(r), where we take the
a-algebra m (1) 10 be the Borel sets In parnicular

| .1
( (1;/:)—’[."cx|n’ [.\'(a.w).h(n)j«/ﬂ he w(1) (3.2)
“

i, for cach 7. the charactenstic function of a countably additive measure on the
Borel sets of B (1)

Next let gis,w). O s <1< o denote white noise elements in W (r), with
sample points denoted by ', and let

Vo, ww)=S(0.w)+y(o,w) Ugo<r<oe.

We assume now [and thruout] that the processes S(-,w) and n(-,w') are
independent and thus for A(-) in W),

[ i Y 1 1
e [ y(o,w.w). 1 =C (14 - = 2do. :
I-!NK\PI'I“L Vv (o, w)h(nhda] (1;h)exp 2L]|h(o)|] do (3.3)

The first result we need is that the weak distribution induced by (3.3) 1s
absolutely continuous with respect to that induced by the Gauss measure, and
that the Radon-Nikodym derivative is a random variable f(#, -), given by:

F(1h)= f” e {[$.8],-2( S.4], ) d (3.4)

where [ . ], denotes mner product in W (1), and p, the measure corresponding to
(3.2). We note that we can rewrite this as:

I ‘
r(/,/z)=.[’c\p i{fuqb(a,w}uzda ZL[S(o.w).h(o)]do}dp. (3:5)

Ihis result s proved in [5].
We wish to show now that (3.5) for each h in W (T) is absolutely continuous
m [0, '] with dernvative given a.e. by (differentiating the integrand):
4 fie.hy= f S (L) Z[S(/,w),h‘(l)]]exp
di T . 3

VI e 2 g § .
2 S(o,w)|*do —2 | S (0.w),h(a)d e 0<1<T.
ZUUH (0.0)1Pdo =2 [ 'S (0.0).h(0) o]}@ ae

First of all we note that 4
] ! A
f‘.lS(l,u);]-’cxp % {f [|S(o,w)||1do~2f [S(o.w).h(o)]da}dp
Q <\ 0 S

S E[)IS (1))

S e——




which is summable i [0 7 ) Sialarly,
’. [ Swrhin lexp l J j.l\:S(d.w) |2 do - ZJ“[S(n.w),h(o)]do] dp
St 2 | 0 0 J

by Schwarte

“ \// 1S ()P JihC))?
which as also summable i [0 7). Hence

ity p

[ ‘ ‘j, exp ;: fl!.'w” o] I'I(')'[S(o.w)‘h(o)]da]dp

‘1." 0
I-'Ad
"f(f "J'( ))dp
Q\"!

=/(1+3)-f(1)

as required.
Next let us note that. for any € >0, we can find M such that

f 1Ip‘)|—t‘.
THnaUs e my

Hence

Hl.h),‘( Inf exp—3{iiS|? Q[S.h],})(l—e)

ISism

=(] :)(cxp~-; Sup {II$ h;If})(cxp;nhnf)

IS)Iam

200 Oexp = YA, +m)’. (3.6)

Hence (for Ac-) i B (7)) we can take the logarithmice denvative:

4 \ogf(1.h) Lo R 0<i1<T
& ogltih I(I.h) a.¢. I.

=(f{ SIS WP+ [ S(nw)h(n)])
2

A exp

'fu';!S(o.w)sza —zj;'[.S'(""")’h(",)]d“}“p)/

PO

(f“cxp ; ;{j;'l[S(a,u)u’do--2L'[S(o.w).h(o)]da}dp)
(3.7




I et

.\:(l,/l)=‘ ".S‘l.u')C\p :{ /‘I|.\'(n‘¢).f‘/a 2’.l[S(a.w),h(o)]x/n}(Ip)/
S < ) &)

WA

(’.’cxp ;{.’.ll!.ﬁ(u.w)il:xln qul[&‘(n.w).h(o)]da}(Ip) (3.8)

v 43 0

(f‘lis("“‘)li:c"p = [fll|5(n.w)||"dn—LI[S(O,U).h(o)]do}dp)

2[ o
T T% % T SRV et T

.c—l ’.*." Z(I-IS,,
(-/u xp -{'[018(00)11 o fo[ (aw)h(o)]daJdp)

3 :IS‘(,‘[,)HZ (39)

Then a simple applicatuon of the Schwartz inequality shows that
Pt.h)20.

IFinally we have then that

| h) il l
ogf(eh)= | ——
ok ) @

ey '{ L Pl A '
A 21./;“5(0./1)” 2]0[.3(a.h).h(o)]doffoP(g.h)da}. (3.10)

Substituting v(0,w,&’) for A(-) in [3.10], we obtain the “log-likelihood-func-
ton™. We shall now show that 8 (z;y) has the interpretation as the conditional
expectation of S(r,w) given “y(o,w,w), 0<o<1”. The latter needs a more
precise definition which we give now. Let {¢,} be any orthornormal basis in
W (1) and let P, correspond to the projection operalor corresponding to the span

of ¢,..., ¢,. Let

) y
§,‘f0¢,(0)y(0.w.w')do.

Let ', denote the sigma-algebra generated by §,,....§,. Let P(1)y denote

"

y(o,w.w'), D<a< i Then
E[S(1w)\P,P(1)y]=E[S(1,w)|5,]

yields a sequence of tame random variables, o Cauchy sequence in the mean of




order two, bamg of course a martingale sequence (with finmite second moment)
We shall show that this sequence s equivalent to the sequence

5 CF: Py

so that

S)=E Sw)|Pny].
Lor this hirst of all
E[§,|P,P(1)y]

is readily seen to be (Bayes Rule) given by:

’. [S,(;”JL‘\P ;{‘II',,SW% Z[PnS.P»V],}d#,

W

[ e ARSI 2 PP ] )
W

Fhis 15 a Cauchy sequence in the mean of order two. Hence

l“ m{ S, Jexp— 3 {ISi - 2[S.r],) du,

[ exp-j{1S1I-2[Sr), ) du,
W (1)
defines a random variable corresponding to the copditional expectation:
In,x‘m E[ [S.¢ jll’,,v]
More generally, for any ¢ in W (1),
hr’r,m k[ [ 5,:,‘:“1,)‘]

is the wdentfied with random variable:

f [S.¢]cxp~;{ll5!lf 2(S.y),}dn,
W)

f exp'-;{IISII?*Z[S‘.V],}‘IP.
W)

Now

n
EIS(1w) - nf S(o.w)do|>*-0 ae.
t~\1/n

e il




and using the fact that

ECE[SIPy ) < E[$7)

1 tollows that

A Strw)| Py '— lim / n’

m.n |

S(o.u)doll’my}

can be dentified with the random varable

( } S(f.w)enp :{ /":;S(o‘w) 2o 2’

1
<0 ol ¢

[ S(o,w).)’(a)]dt’] dP)

( ‘Acxp e : "l.:S(n.wM!do 2[’f .S'(n.w).y(a)]da}dp)
V1l {0 ki

=S (ry) ae (3.11)
In o similar way

E[[S.e]1Py]

is wlso a martingale convergent in the mean of order ong, and we can see that
the limit s identfied with the random variable )

f” [S.:,‘»];’cxp - ;{AS!IZ’ 3[5’)‘],J‘li‘:
& (8]
{ exp - ;{;I.S"If * 3[5-)'],]4}‘:

W

Again

3 SEY R )
’ k\/[;'HS(l.w) - f' nS (0,w)do||?
| t=1/n

\/1;‘{,|S(l,w)+f" nS (0. w)do||*
| 1=1/n

0 with n.

Yt 1/n

I,;.s.S(I w) |: “ [I nS(o,w)do

Also by Jensen's inequality:

E|E[$IP,)I< E[I1).

~mw .




Hence we canorcadily infer that:

E[IIS (t.)?|P,y]

converges 1 the mean of order one, and that + ) v D
~ w ltcer )Yty oy ¢
(- 2 % Sl ( Hees ool e g~ ,'.\>( svhy Jlod s ‘fJ
| _2'\6'4 ) Xy BN )C: L2 ' >
) A -
- ol & o0l -
-— ‘ t- 2 oy S A
R l ) R _‘1,,5"7 .)""2-(4‘ T AW LS(T, ), Yooy b 7) P
e eNp ‘ L 25

i> o random varable
=E[|S(r,0)l*|P(1)y]. (3.12)
Morcover we note that substtuting y (0,0, w’) for h(a) in [3.9], we have:
P = E[IS @) PBWy] = 1S (L))

Now

LIS ()PP ()] LE[S ()PP )y 12

”n=—

= E[1S(10)~ E[ (@) P,y |IIE, B |
yiclding a Cauchy sequence which 1s equivalent to the Cauchy sequence
P(1;P,y).
Hence we can express P,y ) also as:

Py)=E[1S(1w) - E[S(Le)|P(0)y]IB(1)y]
=E[IS(r,w)- S (:;yn|’|£(:)y]. (3.13)

Finally then we have for the log-likelihood-ratio functional:

e

hogf{r.y)= ~ l{ (S (auy)?da- 2f'[sm.y).y(o)]4o +j;IP(o.y)du},
<0 0

(3.14)

which 1s then a generahizaton of the formula in [5].




4. Applications.  The tust appheation ol (3:14) 15 1o the case where S (1.w)
is a4 Gaussian process hecatse of the resulting simplification that

Pliyv)=ENS(t.w) - S ()P
=P (1)

and 1s thus mdependent ot v (o). Moreover, it s possible, if S (r,w) 1s further an
lto process. to obtain a differential charactenzation for P (1) as well as of course
for S (o) See [5) T tis paper. however, we shall concentrate on a non-Gaus-
wan case, studied by Wonham (6] and Liptser-Shiryayev 7). This 1s the case
where S(r.w) 1s a (one-dimensional) real-valued process:

S(r.w)=ox(r  1(w)) 120,

where 7(w) s a Markov tme relative 1o some growing sigma-algebra B (1), and
x(7) 1s the charactensuce function of the positive real-line, ¢ 2 0:

120,

(1
O 1 <0

A(I)z ]
and o 1s a fixed posttive number. 1t s readily verified that:
kﬂsuyf§;mis(mn1=0741w)>d

and hence
.I 2
[ E(S@er)di< .
V]
Fhe process 8 (4,w) 1s of course jortly measurable m 1 and w. Let

vitww)=ox(r— 1))t glr.w) 0<1< o (4.1)

where 0 -0, and g(r,@’) 1s white Gausstan noise in W (T). Let us calculate the
log-likelihood ratio based on [0,7]. Fust let us note that

I:'{S(l.w)zil“/)l l"""{ S“'“’”F(')y]

)

=aS (1;v)

0’ w(t,y)»0

So that
S 5 2
Pliy)=oS (1:y)-S (1)
=o'l wy) - m()), (4.2)
: 4
A o
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\\}u!\'
a(ry)= E[xte - reel) P () ]. (4.3)

Moreover we can teadily calcalate that ety 2(4) denote the distribution of

T
( "Iu\p I‘ ln"l/ ) 2o l")'())tls}dl}(”))
0 = l o
m(iy)= ]
(;’ ")+ [ exp i':o"(l o) 2013-(3)«1)}‘1;’(0)
7y 0 = ¢

e log hikehhood ratuo can thus be expressed:

!‘ 0° f w(0.) )"(/u 20 f"ﬁ((m Jy(a)do+a* IV'(n(n.)) ﬁ(a._;')z)do}

\ ) 0 V)

= I[ 2 ",. z Iy i sXriy ]
= 2i()JU..(o._\)‘ln -njuw(o.))_»(n)doj. (4.5)

where #(0.) 1s given by (4.4).
Ihe simplest case [going back to Wonham [6]] 1s to take for the distribution

of r{w):
Pr(t(w)=0]=P.  Pr(rlw)>1>0]=(1=P)e™", A0

In this case (4.4) becomes:

N(ty)
ml1y)= - e

- - 3 (4.6)
(1= p)e M+ N(1,p)

where

N(ry)= {c‘\p( ’:) + qur(\)zls)}p
< v

+ (1 /z),\/‘c,\p{("; )\)0 ofa}r(s)d.)Jdll. (4.7)
0

Y0

Ilis 1s the same formula, except for replacement of ydi by dY, given by
Shiryayev (1] But the difference appears more strikingly in the “differential
cquation” charactenizaton of 7(r,y) between our version and the “Winer pro-
cess” version. In our case we can derive an ordinary differential equation for
#(1,y) by differenuating directly with respect to 1 in (4.6), remembering that y ()

/7
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s an £ -tuncoon over any bite iterval his s done most expeditiously i the
followmy way - Ginlar to the techimque i Shiryayev [1]). Rewrite:

o)
m(tyv)= )
I+ ¢(1)
where
| 1 il \
o(t)= g(r) (H(I DA g(s)ds g,
= / / .’” 5 )
where
o’ 4
L’(lb=c.\p(( - ,\)1 of y(s)ds].
- 0
Hencee
s (1)
G (r)=) o)

Hence using

7'(t) 3 ¢'(1) ¢'(1)

(1) ol1)  1+(1)

we gel
o2
7 (1) =(l 7:)(1\ e )f'nll w)oy(1); 7(0,y)=p (4.8)

which s then the white-noise version of the formula. In contrast to the Wiener
process version in | 1]

de=(1 7)Aoz’ )ydi+on(l 7)dY (1) (4.9)

If we now add the Wong-Zakar [8] correction terms (o this equation: namely
subtract

"2‘(1 20 )% - n2)dr.
We oblain
dr = (| w)(A ”g')./unn modY (1), (4.10)




L

e S

R SO T

where we note that the only change s replacing y(1)de by dY (1) Hence our
solution s consistent with the Wong-Zakai correction, the Stratanovich mitegral
[9] and the cecde differental formalism ot Lo (10]. Indeed e their calculatons
i actual simulation of zo0) Dashevskn and Liptser [2] also appear to actually
use [48] i place of the Toversion (1Y) that they also denve. They obtain (4.8)
i g purely formal manuer however using the Stratanovich integral to replace the

Lo imteyral
A5 shieht (but nevertheless mmportant m apphication) generahzation, let us

consider the case
Vit )=S0+ xle - 1(@))S, (1) + (),

where af ) and (@) are as before, and the distibution of 7(w) 15 the same. We
can then caleulate: .
(1-p)S,(1)e M+ S,(1)N (1)

S A
(1 pre M+ N(1)

where

s 2 e
N(1)y=pexp - 5 i ‘ S,(0) do 2’ .S:(a)r(n)da}
2 Yy

A

+(1 - pIA [r\p( 1 ’-’S‘,(n)“z/n+fl.5'2(a),r(o)do -M/)dl).
2y s

Sl )

I, following the previous example, we now take

: N(1)eN
Pl1)= ———
(r-p)

we have:

- S )+ S, ()«
S (ty)= — e 2V (4.11)
I+ (1)

wheice o) can be expressed as:

| i i
o(1)= g(r) T p+(l pA (s)ds |,
= * Py fus( ]

whiere

'.S'I(a),y(o)da—)u)
)

=g

;;(l)=cxp(%J';,S;(n)l«lo ’




4
"
Henee, as belore
wlr)
Str)=A wlil)
' L)
i~ | 35060 - St etn) ,\)(;.m
o
ctr=A (S At + S0y (el (412)
with
I)
ol0) = -
W can then abso get o ditferential equation for S(7,y), assuming that S$,(1) and
S0 are ditferentiables but we onit this detait here, excep to quote the result:
(dot denoting dervanive)
: (8,000 S ()8, (0)+ S,0(S (1)~ 5, (1)
3 Nt - s = =
| S5 (0= 8(1)

S+ S (1)

NS S ) (S, 0 S, A)(S (1.v) 5‘,(/))})/

B ) P ), (4.13)

SO =(1 S, (0)+ 8, (0)P.

Because of the rather comphicated nture of thas equation, perhaps it would be
best to use (4 1) above with (4.12) The Tto version of (4.12) 1s given by:

— e

dgs= A1+ ty)de+ S, (ndln)dY (1). (4.14)

Fiially we note that the statistics of S (4.) are those of the Cauchy sequence

S (.rP,y)

and e tarn deternnmed by (4 14) and (4 11). In particular then

TG STERTIRTWERR e e e

LInfeS(Ly) ~a
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s o Mackoy tme with respect o the growimg sigma algebra

()

where () s the o-algebra generated by {2,y ) hence the staustics are de-
termined by the “Wiener process™ version. In particular then the optimal
stoppimg tme  theory of Shiryayev for the “disorder™ problem [1] can be

explonted, mutatis mutandis

131
4]
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[9]

(10}
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